3.4.98 \(\int \frac {x^{3/2}}{(b x^2+c x^4)^{3/2}} \, dx\) [398]

3.4.98.1 Optimal result
3.4.98.2 Mathematica [C] (verified)
3.4.98.3 Rubi [A] (verified)
3.4.98.4 Maple [A] (verified)
3.4.98.5 Fricas [C] (verification not implemented)
3.4.98.6 Sympy [F]
3.4.98.7 Maxima [F]
3.4.98.8 Giac [F]
3.4.98.9 Mupad [F(-1)]

3.4.98.1 Optimal result

Integrand size = 21, antiderivative size = 286 \[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}+\frac {3 \sqrt {c} x^{3/2} \left (b+c x^2\right )}{b^2 \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {3 \sqrt {b x^2+c x^4}}{b^2 x^{3/2}}-\frac {3 \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{7/4} \sqrt {b x^2+c x^4}}+\frac {3 \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 b^{7/4} \sqrt {b x^2+c x^4}} \]

output
3*x^(3/2)*(c*x^2+b)*c^(1/2)/b^2/(b^(1/2)+x*c^(1/2))/(c*x^4+b*x^2)^(1/2)+x^ 
(1/2)/b/(c*x^4+b*x^2)^(1/2)-3*(c*x^4+b*x^2)^(1/2)/b^2/x^(3/2)-3*c^(1/4)*x* 
(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1 
/2)/b^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2) 
)*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/b^(7/4)/(c*x 
^4+b*x^2)^(1/2)+3/2*c^(1/4)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^( 
1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c^(1/4) 
*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x* 
c^(1/2))^2)^(1/2)/b^(7/4)/(c*x^4+b*x^2)^(1/2)
 
3.4.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.20 \[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=-\frac {2 \sqrt {x} \sqrt {1+\frac {c x^2}{b}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {3}{2},\frac {3}{4},-\frac {c x^2}{b}\right )}{b \sqrt {x^2 \left (b+c x^2\right )}} \]

input
Integrate[x^(3/2)/(b*x^2 + c*x^4)^(3/2),x]
 
output
(-2*Sqrt[x]*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[-1/4, 3/2, 3/4, -((c*x^2 
)/b)])/(b*Sqrt[x^2*(b + c*x^2)])
 
3.4.98.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {1428, 1430, 1431, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1428

\(\displaystyle \frac {3 \int \frac {1}{\sqrt {x} \sqrt {c x^4+b x^2}}dx}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1430

\(\displaystyle \frac {3 \left (\frac {c \int \frac {x^{3/2}}{\sqrt {c x^4+b x^2}}dx}{b}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1431

\(\displaystyle \frac {3 \left (\frac {c x \sqrt {b+c x^2} \int \frac {\sqrt {x}}{\sqrt {c x^2+b}}dx}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 \left (\frac {2 c x \sqrt {b+c x^2} \int \frac {x}{\sqrt {c x^2+b}}d\sqrt {x}}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {3 \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\sqrt {b} \int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {b} \sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {3 \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {3 \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {b+c x^2}}-\frac {\sqrt {x} \sqrt {b+c x^2}}{\sqrt {b}+\sqrt {c} x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{2 b}+\frac {\sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

input
Int[x^(3/2)/(b*x^2 + c*x^4)^(3/2),x]
 
output
Sqrt[x]/(b*Sqrt[b*x^2 + c*x^4]) + (3*((-2*Sqrt[b*x^2 + c*x^4])/(b*x^(3/2)) 
 + (2*c*x*Sqrt[b + c*x^2]*(-((-((Sqrt[x]*Sqrt[b + c*x^2])/(Sqrt[b] + Sqrt[ 
c]*x)) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c 
]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(c^(1/4)*Sqrt 
[b + c*x^2]))/Sqrt[c]) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/( 
Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2 
])/(2*c^(3/4)*Sqrt[b + c*x^2])))/(b*Sqrt[b*x^2 + c*x^4])))/(2*b)
 

3.4.98.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1428
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(-d)*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(p + 1)/(2*b*(p + 1))), x] + Simp[d^2* 
((m + 4*p + 3)/(2*b*(p + 1)))   Int[(d*x)^(m - 2)*(b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && LtQ[p, -1]
 

rule 1430
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[d*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[c*( 
(m + 4*p + 3)/(b*d^2*(m + 2*p + 1)))   Int[(d*x)^(m + 2)*(b*x^2 + c*x^4)^p, 
 x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && LtQ[m + 2*p + 1, 0 
]
 

rule 1431
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b + c*x^2)^p)   Int[(d*x)^(m + 2*p)*(b + c 
*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
3.4.98.4 Maple [A] (verified)

Time = 0.70 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.71

method result size
default \(\frac {x^{\frac {5}{2}} \left (c \,x^{2}+b \right ) \left (6 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, E\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b -3 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b -6 c \,x^{2}-4 b \right )}{2 \left (c \,x^{4}+b \,x^{2}\right )^{\frac {3}{2}} b^{2}}\) \(203\)
risch \(-\frac {2 \left (c \,x^{2}+b \right ) \sqrt {x}}{b^{2} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}+\frac {c^{2} \left (\frac {\sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{c^{2} \sqrt {c \,x^{3}+b x}}-\frac {b \left (\frac {x^{2}}{b \sqrt {\left (x^{2}+\frac {b}{c}\right ) c x}}-\frac {\sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{2 b c \sqrt {c \,x^{3}+b x}}\right )}{c}\right ) \sqrt {x}\, \sqrt {x \left (c \,x^{2}+b \right )}}{b^{2} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}\) \(411\)

input
int(x^(3/2)/(c*x^4+b*x^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/(c*x^4+b*x^2)^(3/2)*x^(5/2)*(c*x^2+b)*(6*((c*x+(-b*c)^(1/2))/(-b*c)^(1 
/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^( 
1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2)) 
*b-3*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/ 
(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2) 
)/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b-6*c*x^2-4*b)/b^2
 
3.4.98.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.28 \[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=-\frac {3 \, {\left (c x^{4} + b x^{2}\right )} \sqrt {c} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) + \sqrt {c x^{4} + b x^{2}} {\left (3 \, c x^{2} + 2 \, b\right )} \sqrt {x}}{b^{2} c x^{4} + b^{3} x^{2}} \]

input
integrate(x^(3/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")
 
output
-(3*(c*x^4 + b*x^2)*sqrt(c)*weierstrassZeta(-4*b/c, 0, weierstrassPInverse 
(-4*b/c, 0, x)) + sqrt(c*x^4 + b*x^2)*(3*c*x^2 + 2*b)*sqrt(x))/(b^2*c*x^4 
+ b^3*x^2)
 
3.4.98.6 Sympy [F]

\[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{\frac {3}{2}}}{\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(x**(3/2)/(c*x**4+b*x**2)**(3/2),x)
 
output
Integral(x**(3/2)/(x**2*(b + c*x**2))**(3/2), x)
 
3.4.98.7 Maxima [F]

\[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{\frac {3}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^(3/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")
 
output
integrate(x^(3/2)/(c*x^4 + b*x^2)^(3/2), x)
 
3.4.98.8 Giac [F]

\[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{\frac {3}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^(3/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")
 
output
integrate(x^(3/2)/(c*x^4 + b*x^2)^(3/2), x)
 
3.4.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^{3/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{3/2}}{{\left (c\,x^4+b\,x^2\right )}^{3/2}} \,d x \]

input
int(x^(3/2)/(b*x^2 + c*x^4)^(3/2),x)
 
output
int(x^(3/2)/(b*x^2 + c*x^4)^(3/2), x)